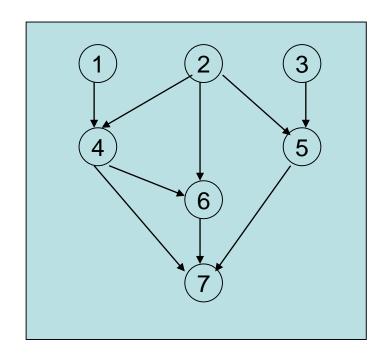
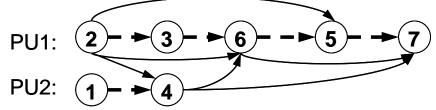
# Алгоритмы планирования вычислений в ИУС РВ

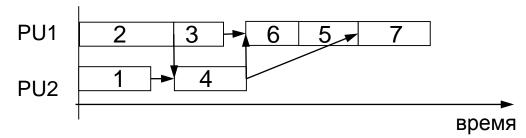
Кафедра АСВК, Лаборатория Вычислительных Комплексов Костенко В.А.

#### Способы представления расписания

- Временная диаграмма для каждой работы задано время начала выполнения s'(t<sub>j</sub>) и процессор на котором она выполняется.
- Привязка работ к процессорам и порядковый номер выполнения работы на процессоре.
- Привязка работ к процессорам и приоритет работы.
- 4. Статико-динамические расписания.





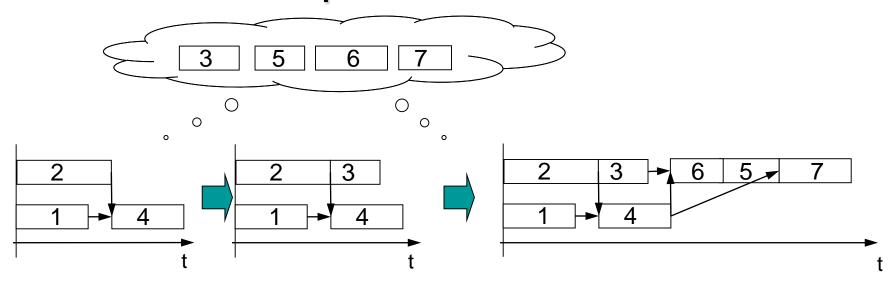


#### Меры оценки эффективности расписания

- 1. Время выполнения расписания.
- 2. Число используемых процессоров для выполнения множества работ за время не превышающее заданные директивный срок.
- 3. Максимальное число совместимых работ.

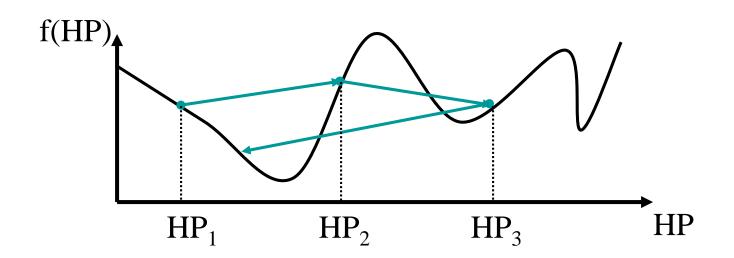
4. Критерии, основанные на использовании функций штрафа за нарушение директивных сроков работ.

## Конструктивные алгоритмы построения расписаний



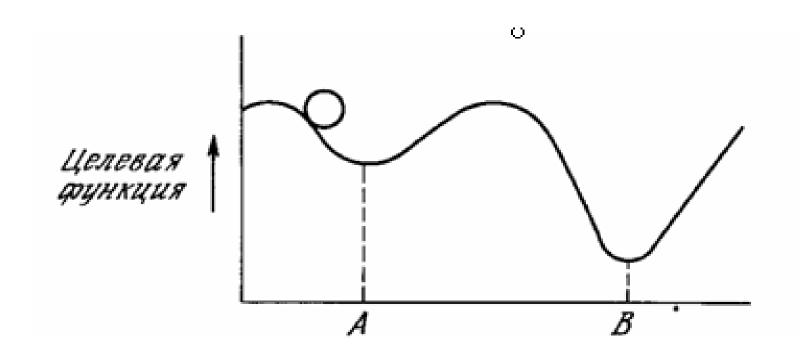
- Жадные алгоритмы
- Метод ветвей и границ
- Алгоритмы сочетающие жадные стратегии и стратегии ограниченного перебора

### Итерационные алгоритмы построения расписаний

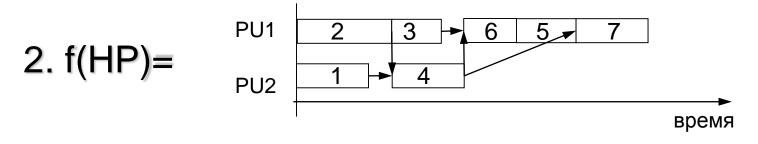


- Алгоритмы случайного поиска
- Имитация отжига
- Алгоритмы локальной оптимизации
- Генетические и эволюционные алгоритмы

## Алгоритмы имитации отжига (принцип работы)



Алгоритмы имитации отжига (общая схема одной итерации)



3. Проверка критерия останова

4. HP = PU1: 
$$(2) - (3) - (5) - (6) - (7)$$
PU2:  $(1) - (4)$ 

5. Выбор текущего приближения НР

## Алгоритмы имитации отжига (общая схема)

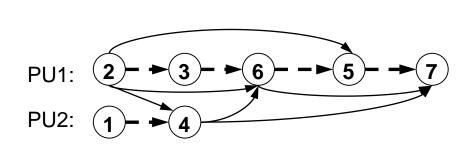
5. Алгоритмы имитации отжига с некоторой вероятностью допускают переход в состояние с более высоким значением целевой функции:

$$P(HP^{k} \to HP^{k+1}) = \begin{cases} 1, & \Delta f \le 0 \\ \exp(-\Delta f/T), & \Delta f > 0 \end{cases}$$

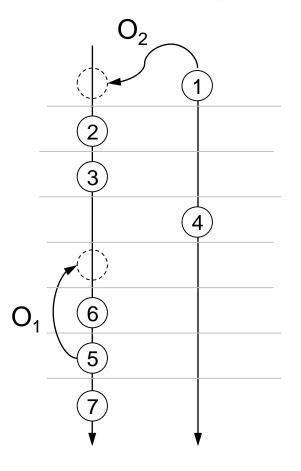
Поиск продолжается до тех пор, пока алгоритм не попадает в минимум, из которого он уже не может выйти за счет тепловых флуктуаций



## Алгоритмы имитации отжига (система операций преобразования расписаний)



**Теорема**. Для любых двух корректных  $O_1$  расписаний  $HP_1$  и  $HP_2$  существует цепочка операций  $\{O_1, O_2\}$ , переводящая расписание  $HP_1$  в  $HP_2$  так, что каждое промежуточное расписание корректно и длина цепочки <=2N.



## Алгоритмы имитации отжига (асимптотическая скорость сходимости)

Чтобы достичь наперед заданной точности, нужно совершить число итераций, пропорциональное квадрату от размера пространства поиска.

# Алгоритмы имитации отжига (направленные стратегии применения операций)

#### Стратегия уменьшения задержек.

Утверждение. Если время начала выполнения каждой работы равно длине критического пути в графе потока данных, то расписание будет иметь минимальное время выполнения.

#### Стратегия заполнения простоев.

*Утверждение.* Если простоев процессоров нет, то расписание будет иметь минимальное время выполнения.

# Генетический алгоритм Холланда (SGA)





 Holland J.N. Adaptation in Natural and Artificial Systems. Ann Arbor, Michigan: Univ. of Michigan Press, 1975.

# Генетический алгоритм Холланда (SGA)

- Основан на использовании механизмов естественной эволюции:
  - 1. Изменчивость → операция мутации
  - 2. Наследственность → операция скрещивания
  - 3. Естесственный отбор → операция селекции

#### Основные понятия

- Популяция это множество битовых строк.
- Каждая строка одно из возможных решений задачи.
- По строке может быть вычислена функция выживаемости, которая характеризует качество решения.

• Основные операции алгоритма: *селекция*, *скрещивание и мутация* выполняются над элементами популяции.

#### Схема ГА

- 1. Сгенерировать случайным образом популяцию размера Р.
- 2. Вычислить функцию выживаемости для каждой строки популяции.
- 3. Выполнить операцию селекции.
- 4. Выполнить операцию скрещивания:
  - 4.1. Выбрать пары для скрещивания.
  - 4.2. Для каждой выбранной пары выполнить скрещивание, получить двух потомков и произвести в популяции замену родителей на их потомков.
- 5. Выполнить операцию мутации.
- 6. Если критерий останова не достигнут, перейти к п.2, иначе завершить работу.

#### Требования к кодированию решений

- 1. Однозначность: каждая закодированная строка должна соответствовать единственному решению исходной задачи.
- 2. Возможность кодирования любого допустимого решения.
- 3. Получение в результате генетических операций корректных вариантов решений.
- 4. Возможность перехода от любого корректного решения к любому другому корректному решению.

#### Требования к кодированию решений

- Для задач непрерывного и целочисленного мат. программирования, оптимизируемые параметры задаются:
  - двоичным кодом числа,
  - кодами Грея.

#### Создание начальной популяции

• Случайным образом генерируется начальная популяция в пределах допустимых значений (в области поиска):

```
X_1[10100..01], X_2[11100..11], ..., X_N[01010..10]
```

#### Функция выживаемости

- Выбирается согласно предметной области
- Определяет качество решения
- Применяется ко всем элементам популяции

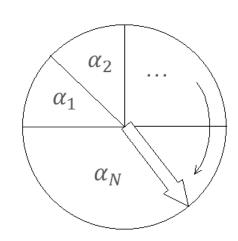
#### Операция селекции

• Схема пропорциональной селекции:

$$\bar{F} = \frac{\sum F_i}{N}, \quad r_i = \lfloor \frac{F_i}{F} \rfloor$$

• Схема рулетки:

$$\alpha_i = 2\pi \; \frac{F_i}{\bar{F}}$$



#### Операция скрещивания

- Параметр порог вероятности скрещивания  $p_{cr}$
- Одноточечное скрещивание:

| Parents              | Cr  | Crossover point |     |     |     |     |     |     |     |       |     |
|----------------------|-----|-----------------|-----|-----|-----|-----|-----|-----|-----|-------|-----|
| 0 1 0 1 0            | 1 0 | 0 1             | 1 1 | 0 0 | 0 1 | 0 0 | 1 1 | 0 0 | 1 0 | 0 0 0 | 0 0 |
|                      |     |                 |     |     |     |     |     |     |     |       |     |
| 0 1 0 1 0            | 0 0 | 1 0             | 1 1 | 0 1 | 1 1 | 0 0 | 1 0 | 1 0 | 0 0 | 0 0 0 | 0 0 |
| One pair of children |     |                 |     |     |     |     |     |     |     |       |     |
| 0 1 0 1 0            | 1 0 | 1 0             | 1 1 | 0 1 | 1 1 | 0 0 | 1 0 | 1 0 | 0 0 | 0 0 0 | 0 0 |
| 0 1 0 1 0            | 0 0 | 0 1             | 1 1 | 0 0 | 0 1 | 0 0 | 1 1 | 0 0 | 1 0 | 0 0 0 | 0 0 |

#### Операция мутации

- Параметр порог вероятности мутации  $\boldsymbol{p}_{mut}$
- Если  $p < p_{mut}$ , то бит инвертируется:

$$X = (100110 \dots 001)$$
 $p < p_{mut}$ 
 $\hat{X} = (100010 \dots 001)$ 

#### Критерий останова

- Процесс продолжается итерационно
- Варианты критерия останова:
  - Выполнение заданного числа итераций
  - Выполнение заданного числа итераций без улучшения
  - Достижение заданного значения функции выживаемости

• <u>Схема</u> (*S*) - множество строк, содержащих одинаковые биты в некоторых фиксированных позициях:

$$10 * 1 = \{1001, 1011\}$$
  
 $1 * 100 = \{10100, 11100\}$   
 $01 * * 0 = \{01000, 01010, 01100, 01110\}$ 

Схема (S) - множество строк, содержащих одинаковые биты в некоторых фиксированных позициях:

$$10 * 1 = \{1001, 1011\}$$
  
 $1 * 100 = \{10100, 11100\}$   
 $01 * * 0 = \{01000, 01010, 01100, 01110\}$ 

примеры схем

• <u>Порядок схемы</u> (*K*)- количество фиксированных позиций в схеме:

$$K(10 * 1) = 3$$

$$K(1 * 100) = 4$$

$$K(01 ** 0) = 3$$

• <u>Определяющая длина схемы</u> (*L*)— расстояние между самыми дальними фиксированными позициями:

$$S = \underset{\uparrow}{10} * \underset{\uparrow}{1} \qquad L = 3$$

$$S = \underset{\uparrow}{1} * 100 \qquad L = 4$$

$$S = * \underset{\uparrow}{1} * 0 * \qquad L = 2$$

• Можно ввести понятие среднего значения F(S,t) целевой функции схемы S на шаге t:

$$F(S,t) = \frac{1}{N_S} \sum_{s \in S} F(s)$$

• Для любой схемы, представляющей хорошее решение, нужно, чтобы количество ее примеров увеличивалось с увеличением количества итераций

 На преобразование схем влияют операции ГА: мутация, скрещивание и селекция

$$N(S,t+1) \ge N(S,t) \frac{F(S,t)}{\overline{F}(t)} \left[ 1 - p_c \frac{L(S)}{l-1} - p_m K(S) \right]$$

- N(S,t) количество примеров схемы S на шаге t
- $ar{F}(t)$  среднее значение целевой функции в популяции на шаге t
- $p_c$ ,  $p_m$  вероятности операций мутации и скрещивания
- l- количество бит в строке

$$N(S,t+1) \ge N(S,t) \frac{F(S,t)}{\overline{F}(t)} \left[ 1 - p_c \frac{L(S)}{l-1} - p_m K(S) \right]$$

 Ожидаемое число примеров схемы S в новой популяции

$$N(S,t+1) \ge N(S,t) \frac{F(S,t)}{\overline{F}(t)} \left[ 1 - p_c \frac{L(S)}{l-1} - p_m K(S) \right]$$

 Вероятность выживания схемы S после выполения операций мутации и скрещивания

$$N(S,t+1) \ge N(S,t) \frac{F(S,t)}{\overline{F}(t)} \left[ 1 - p_c \frac{L(S)}{l-1} - p_m K(S) \right]$$

 Мутация с большей вероятностью разрушает схемы высокого порядка

$$N(S,t+1) \ge N(S,t) \frac{F(S,t)}{\overline{F}(t)} \left[ 1 - p_c \frac{L(S)}{l-1} - p_m K(S) \right]$$

 Скрещивание с большей вероятностью разрушает схемы с большой определяющей длиной

 Проблема выбора параметров ГА является для многих приложений сложной задачей

• Теоретические результаты для решения данной проблемы на данный момент отсутствуют

 На практике данная проблема решается экспериментальным путем

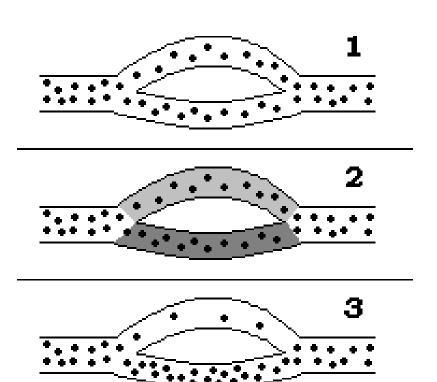
### Гипотеза строительных блоков

• Строительные блоки - схемы с низким порядком, малыми определяющими длинами и большими значениями средних целевых функций.

• <u>Гипотеза строительных блоков</u>: комбинирование хороших строительных блоков дает хорошую строку.

# Муравьиные алгоритмы (биологическая модель)

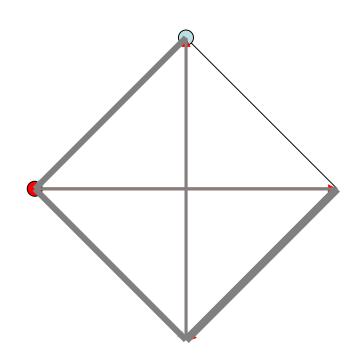
- 1. Изначально вероятности выбора маршрутов равны
- 2. Муравьи, выбравшие кратчайший маршрут, возвращаются быстрее, количество феромона на коротких маршрутах больше
- 3. Вероятность выбора кратчайшего маршрута повышается



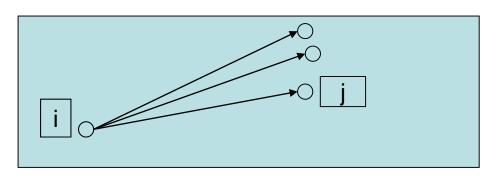
# Муравьиные алгоритмы (МА для решения задачи коммивояжера)

#### Общая схема итерации:

- «Создание» муравьев
- Построение маршрутов муравьями
- Обновление феромонного следа на найденных маршрутах



## Муравьиные алгоритмы (построение маршрута и обновление феромонов)

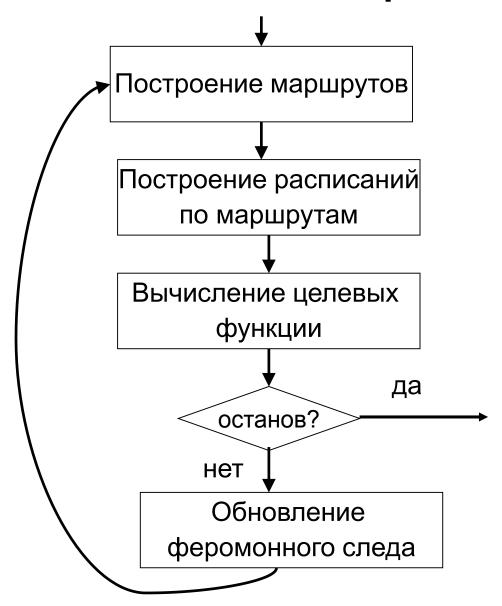


$$P_{ij,k}(t) = \begin{cases} \frac{\left(\tau_{ij}(t)\right)^{\alpha} \cdot \left(\eta_{ij}(t)\right)^{\beta}}{\sum\limits_{l \in J_k} \left(\tau_{il}(t)\right)^{\alpha} \cdot \left(\eta_{il}(t)\right)^{\beta}}, j \notin L_k \\ 0, j \in L_k \end{cases}$$

$$\tau_{ij}(t+1) = (1-p) \cdot \tau_{ij}(t) + \sum_{k=1}^{m} \Delta \tau_{ij,k}(t)$$

$$\Delta \tau_{ij,k}(t) = \begin{cases} F(T_k(t)), (i,j) \in T_k(t) \\ 0, (i,j) \notin T_k(t) \end{cases}$$

# Муравьиные алгоритмы (использование для построения расписаний)



### Алгоритмы случайного поиска

 Основой методов случайного поиска служит итерационный процесс:

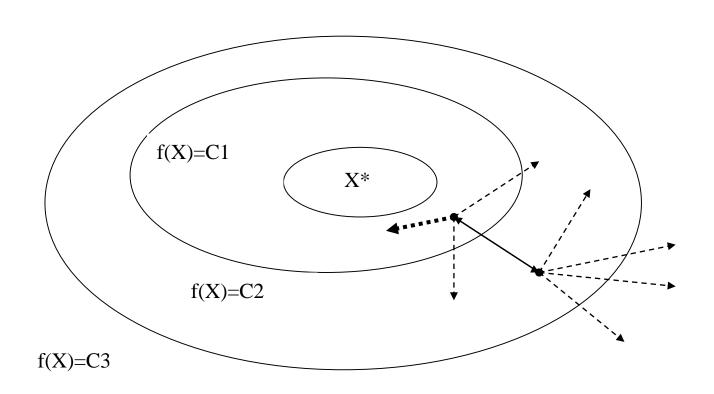
$$X_{k+1} = X_k + \alpha_k \cdot \frac{\xi}{\|\xi\|}, k = 0,1,...,$$

 $\alpha k$  – величина шага,

 $\xi = (\xi 1, ..., \xi n)$  – некоторая реализация *n*-мерного случайного вектора  $\xi$ .

 Л.А. Растригин. Статистические методы поиска.- М.: Наука, 1968.

### Алгоритмы случайного поиска



### Алгоритмы случайного поиска

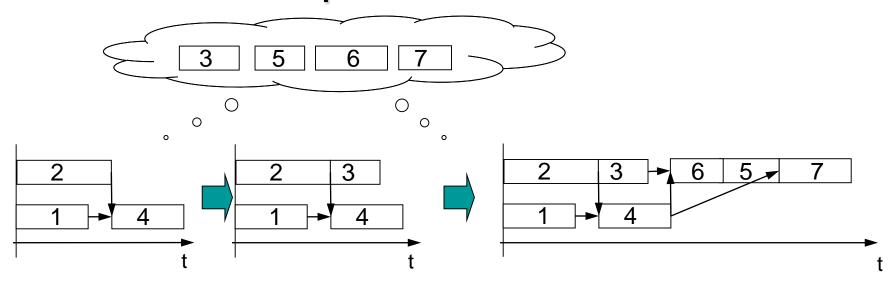
- •алгоритм с парной пробой,
- •алгоритм с возвратом при неудачном шаге,
- •алгоритм наилучшей пробы,
- •алгоритм с линейной экстраполяцией,
- •алгоритм статистического градиента,
- •алгоритмы с самообучением.

# Алгоритмы случайного поиска (параметры алгоритма)

- •начальный шаг α > 0,
- ■коэффициент уменьшения шага γ > 1,
- ■предельное число неудачных попыток K,
- ■параметр точности ε > 0,
- ■начальное приближение № 0

Записать схему алгоритма, показать завершимость и достижение параметра точности.

# Конструктивные алгоритмы построения расписаний



- Жадные алгоритмы
- Метод ветвей и границ
- Алгоритмы сочетающие жадные стратегии и стратегии ограниченного перебора

### Жадные алгоритмы (общая схема)

Разложимые функции:

$$\min_{(x,y)} f(x,y) = \min_{(x)} f_1(x, \min_{(y)} f_2(y))$$

- Выбрать очередную работу ≡ переменную х или у.
- Выбрать в соответствии с локальной функцией (f<sub>1</sub>,f<sub>2</sub>) место размещения работы ≡ присвоить значение переменной.

# Жадные алгоритмы (построение расписания выполнения работ в одноприборном устройстве)

• Для частной задачи:

$$\max_{H \in H^{*'}} |H|$$

$$\forall j: t_j = f_j - s_j$$

 известен оптимальный жадный алгоритм сложности O(n·log n).

# Жадные алгоритмы (*GrA* - алгоритм построения расписания для одноприборного устройства)

- 1. Упорядочиваем работы по возрастанию  $f_j$ . Заявки с одинаковым значением  $f_j$  располагаем в произвольном порядке. Сложность  $O(n \cdot log \ n)$ .
- 2. Размещаем в расписание работу j=1.
- 3. Ищем первую работу для которой s<sub>i</sub>≤ *f<sub>j</sub> ,* размещаем ее в расписание и *j=i.*
- 4. Шаги 2, 3 повторяем пока список не исчерпан. Количество повторов O(n).

# Жадные алгоритмы (оптимальность алгоритма *GrA*)

*Теорема.* Алгоритм *GrA* включает в расписание наибольшее возможное количество совместимых работ.

Доказательство.

- ✓ Если в каком-то оптимальном расписании работа 1 отсутствует, то можно в нем заменить заявку с самым меньшим *f* на работу 1.
- ✓ Не нарушится совместимость работ и не изменится их количество в расписании.

# Жадные алгоритмы (оптимальность алгоритма *GrA*)

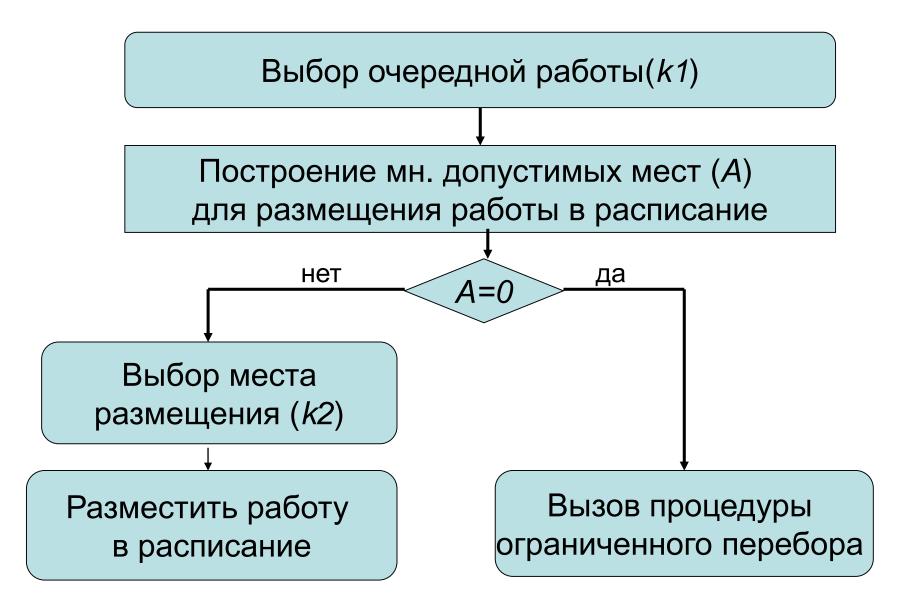
- ✓Т.е. можно искать оптимальное расписание содержащее работу 1 → существует оптимальное расписание, начинающееся с жадного выбора.
- √Из исходного набора можно удалить все работы несовместимые с 1.
- ✓ Задача сводится, к выбору набора работ из множества оставшихся работ, т.е. мы свели задачу к аналогичной задаче с меньшим числом работ.
- ✓ Рассуждая по индукции, получаем, что делая на каждом шаге жадный выбор, мы придем к оптимальному расписанию.

### Жадные алгоритмы (как доказать, что алгоритм получает оптимальное решение)

1. Доказываем что жадный выбор на первом шаге не исключает возможности получения оптимального решения.

- Показываем, что подзадача, возникающая после жадного выбора на первом шаге, аналогична исходной.
- 3. Рассуждение завершается по индукции.

### Алгоритмы сочетающие жадные стратегии и стратегии ограниченного перебора



### Пример процедуры ограниченного перебора

0.4

| M1  | M2  | 2 M3 |  |
|-----|-----|------|--|
| 0.2 | 0.2 | 0.1  |  |
|     |     | 0.1  |  |
| 0.5 | 0.5 | 0.4  |  |
| 0.3 | 0.3 | 0.4  |  |

### Материалы курса

- http://lvk.cs.msu.su/courses/
  - Презентации лекций
  - Вопросы к экзамену (скоро)
  - Оттиски статей